山口市新本庁舎整備区域における活断層の総合解釈

報告書

(資料編)

2022年9月

山口大学

表 2.1-1 文献・資料調査に用いた主要文献一覧

文献・資料名	発行年	著者	発行所、雑誌名、巻・号、ページ	対象とした地質構造 ・研究手法等
論文・報告書等				
山口市内を通る椹野川構造線の位置	1978	高橋英太郎	山口県の自然, 4(8), 26-27.	椹野川断層 ・ボーリング資料の検討
山口市宮野地区を通る椹野川構造線の位置	1980	高橋英太郎	山口県の自然, 4(10), 32-32	椹野川断層 ・露頭調査
山口地域の白亜紀環状岩脈とコールドロン	1999	武田賢治・今岡照喜	地質学論集, 53, 199-219.	
山口盆地北縁部を構成するリニアメントと活断層	2001	玉村修司・金折裕司	日本応用地質学会研究発表会講演論文	大原湖断層系 • 地表踏查 • 露頭調查 • 地形判読
山口県大原湖断層帯の活動性に関する地質調査(序報)	2003	水野清秀・下川浩一・佃 栄吉・小松原 琢・新見 健・井上 基・木下博久・松 山紀香・金折裕司	活断層・古地震研究報告, 3, 175- 184.	 大原湖断層系 (グラーベン状構造) ・ボーリング資料の検討 ・露頭調査 ・基盤岩深度分布図)
山口県大原湖断層帯東部,大原湖断層および仁保川断層のトレンチ調査	2004	小松原 琢・水野清秀・下川浩一・田中 竹延・柳田 誠・松木宏彰・小笠原 洋・松山紀香	活断層・古地震研究報告, 4, 209- 219	大原湖断層系 (大原湖断層・仁保川断層) ・トレンチ調査
山口盆地地下の伏在断層調査	2004	水野清秀・小松原琢・下川浩一・金折裕 司・森野道夫・三輪敦志・信岡 大	活断層・古地震研究報告, 4, 221- 230.	椹野川断層・グラーベン状構造 ・反射法地震探査 ・ボーリング調査
山口県大原湖断層帯西部,宇部東部断層のトレンチ調査	2005	小松原 琢・水野清秀・金折裕司・小笠 原 洋・新見 健・木下博久	活断層・古地震研究報告, 5, 139- 145.	大原湖断層系(宇部東部断層) ・トレンチ調査
平成14年度平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2003	山口大学	72p.	大原湖断層系 (椹野川断層・グラーベン状構造・山口盆 地北西縁断層 (Ym1))
平成15年度平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2004	山口大学	42p.	 ・地表踏査 ・ボーリング調査 ・ボーリング調査
平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2005	山口大学	136p.	 ・路頭調査 ・トレンテ調査 ・地形判読 ・年代測定・分析 ・断層シミュレーション
山口県中央部,徳佐-地福断層南西部と木戸山西方断層北東端の性状およひ *活動性	2007	森岡達也・佐川厚志・金折裕司・田中竹 延	応用地質, 48, 35-47.	 大原湖断層系 (徳佐-地福断層,木戸山西方断層) ・地表踏査 ・ボーリング調査 ・露頭調査 ・トレンチ調査 ・地形判読 ・年代測定・分析
山口県山市邨 海佐	2008	佐川厚志・相山光太郎・金折裕司・田中	六田地暦 40 78_03	大原湖断層系 (徳佐-地福断層と迫田-生雲断層)
μμπτπο, 磁体-地価的層と坦田-土芸的層の注体わよい位動性	2008	竹延	/心田≁也具, 47, / 0−73.	 ・地衣崎宣 ・都頭調査 ・トレンチ調査 ・地形判読 ・年代測定・分析

			原 洋・新見 健・木下博久	145.	・トレンチ調査
	平成14年度平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2003	山口大学	72p.	大原湖断層系 (椹野川断層・グラーベン状構造・山口盆 地北西縁断層 (Ym1))
	平成15年度平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2004	山口大学	42p.	 ・地表踏査 ・ボーリング調査 ・ボーリング調査
	平成16年度原子力安全基盤調査研究_原子力安全基盤調査研究 (地質断層の再活動性と地震テクトニクスに関する研究)報告書	2005	山口大学	136p.	 ・ 略 頭 嗣 宜 ・ トレンフ 調 宜 ・ 地形判読 ・ 年代測定・分析 ・ 断層シミュレーション
	山口県中央部、大原湖断層系の性状と活動性	2006	金折装司2月中竹延・柳田・蔵・山口大学断着テクトニクス研究グループ	応用地質, 47-4, 218-231.	山口大学(2005)の論文
	山口県中央部,徳佐-地福断層南西部と木戸山西方断層北東端の性状およひ	2007	森岡達也・佐川厚志・金折裕司・田中竹 延	応用地質, 48, 35-47.	 大原湖断層系 (徳佐-地福断層,木戸山西方断層) ・地表踏査 ・ボーリング調査 ・露頭調査 ・トレンチ調査 ・地形判読 ・年代測定・分析
	山口県中東部,徳佐-地福断層と迫田-生雲断層の性状および活動性	2008	佐川厚志・相山光太郎・金折裕司・田中 竹延	応用地質, 49, 78-93.	 大原湖断層系 (徳佐-地福断層と迫田-生雲断層) ・地表踏査 ・ボーリング調査 ・露頭調査 ・トレンチ調査 ・地形判読 ・年代測定・分析
	山口市湯田温泉の温泉水の地球化学的特徴と起源	2008	安川知里・田中和広	山口地学会誌, 60, 9-20.	山口盆地の基盤構造 ・ボーリング資料の検討 ・地下水の化学分析
	山口盆地における地下水流動に関する研究	2014	安武香織・田中和広	日本応用地質学会研究発表会講演論 文集, 19-20.	山口盆地の基盤構造 ・ボーリング資料の検討 ・地下水の化学分析
	活断層系と地震帯露頭と歴史から学ぶ	2016	金折裕司	粘土科学, 54(3), 97-104	大原湖断層系 総括 シンポジウム論文
	山口市新庁舎整備に係る断層調査報告書	2019	山口大学	14p	山口市新本庁舎整備区域の地下構造 ・地形判読 ・反射法地震探査
	山口-出雲地震帯西部に沿って新たに発見された活断層系	2019	相山光太郎・金折裕司	地質学雑誌, 125, 555-570.	大原湖断層系 総括 巡検案内書
	電磁探査法による温泉水の流動経路の推定-山口県湯田温泉における適用-	2021	西山成哲・鈴木浩一・田中和広	物理探查, 74, 1-16	 湯田温泉地域の地下構造 ・CSAMT探査 ・シミュレーション
버	図類(解説書含む)				
	20万分の1地質図幅「山口及び見島」	2007	松浦浩久・尾崎正紀・脇田浩二・牧本 博・水野清秀・亀高正男・須藤定久・森 尻理恵・駒澤正	地質調査総合センター,1葉	地質図(1/20万)
	山口県地質図第3版(15万分の1)及び同説明書	2012	西村祐二郎・今岡照喜・金折裕司・亀谷 敦	山口地学会, A0判1枚+167p.	地質図(1/15万)
	活断層詳細デジタルマップ [新編]	2018	今泉俊文・宮内崇裕・堤 浩之・中田 高編	東京大学出版会, 154p+USBメモリ	活断層図(縮尺可変,最大1/2.5万)
	1:25,000活断層図「山口」	2021	楮原京子・田力正好・千田 昇・中田 高	国土地理院	活断層図(1/2.5万)

	ボーリング	孔口地盤高	掘進長	既往業務(2021) ¹ 進長の判定深度		本業務(の判定	見直し) E深度	両者の差異	備考	
	孔香	GH=m (m) GL-m GH=m GL-m GH=m		GH=m						
	R2-BrNo.1	30.04	17.00	11.30	18.74	11.30	18.74	差異なし	柱状図記載通り	
	R2-BrNo.2	30.49	21.00	0.80	29. <mark>6</mark> 9	0. 80	29. <mark>6</mark> 9	差異なし	柱状図記載通り	
	R2-BrNo. 3	29.48	17.00	8.90	18.63	10.80	18.63	1.9m下方へ		
過	R2-BrNo. 4	31.93	45.00	7.70	24. 23	9.00	22. 93	1.3m下方へ		
	R2-BrNo. 5	29.46	17.00	10. 70	18.76	11.90	17.56	1.2m下方へ	コア組織の詳細観察 により判定	
	R2-BrNo. 6	31.85	17.00	9.50	22.35	11.70	20. 15	2.2m下方へ		
月	R2-BrNo. 7	31.82	18.00	6.45	25.37	7.55	24. 27	1.1m下方へ		
月天	R2−BrNo.8	31.85	18.00	7.10	24.75	7.10	24. 75	差異なし	柱状図記載通り	
	R2-BrNo.9				欠	番				
	R2-BrNo.10	31.98	9.00	1.20	30. 78	1. 20	30. 78	差異なし	柱状図記載通り	
	R2-BrNo.11	32.04	15.00	1.55	30.49	1.55	30. 49	差異なし	柱状図記載通り	
	R2-BrNo.12	31.98	14.00	1.35	30.63	1.35	30.63	差異なし	柱状図記載通り	
	R2-BrNo. 13	32.15	19.00	7.80	24.35	7.80	24.35	差異なし	柱状図記載通り	

表 2.2-1 見直し前後の基盤岩上面の分布深度及び標高

ł	地質時代		地層区分	記号	地盤性状				
			盛土層	Bk	近年の土地造成盛土。 バラス及び礫混じり砂質土(赤褐色)からなる。				
			埋土層	F	江戸末期〜明治初期かけて造成された埋土(トレンチF1、F2)。 岩塊、礫混じり粘性土を主体とする。				
			底質堆積物	Bm	長山城築城に由来するお堀の堆積物。 有機質の礫混じり粘性土からなり、含水が高い。				
		完	崖錐堆積物	△ dt △	土地造成以前より背後斜面および谷筋にかけて分布する堆積物。 礫混じり土砂状を呈し不均質。				
		新世	沖積粘性土層	Ac	五十鈴川、一の坂川によって運搬・堆積した粘性土堆積物。				
	新第 生四 代紀		沖積砂質土層	As	五十鈴川、一の坂川によって運搬・堆積した砂質土堆積物。				
新生化		,	沖積土石流堆	Agf	五十鈴川、一の坂川において河川氾濫などにより二次的に堆積した岩屑 状の礫質土堆積物。				
		/	沖積砂礫層	Ag	五十鈴川、一の坂川によって運搬・堆積した礫質土堆積物。				
			洪積土石流堆	Dgf	洪積時代に形成された二次的な移動性堆積物。 岩屑状の砂礫層として分布。クサリ礫混入。				
		-	洪積粘性土層	Dc	概ね均質な粘土~礫混じり粘土で構成され高い粘性を持つ。				
		史 新 世	洪積崖錐堆	Ddt	洪積時代に形成された崖錐性堆積物。 砂質土~礫質土で構成され不均質な分布を示す。				
		Щ	洪積砂質土層	Ds	シルト質砂~礫混じりシルト質砂で構成され細粒砂を主体とする。 礫はφ5mm前後の礫をわずかに含む程度。				
			洪積砂礫層 Dg		礫質砂~砂礫で構成され、クサリ礫を含む。				
中	白重	E紀	花崗斑岩	Gp	基盤岩の結晶片岩に貫入・固結した岩盤。				
生代	E ドリアス紀		結晶片岩	Sch	当該地に分布する基盤岩。				

表 4.3-1 整備区域における地質構成表

*エスケイ(2021)の区分を踏襲しつつ、本調査で得られた結果を踏まえて作成.

表 4.3-2 標準貫入試験結果一覧表

			試験区間の打撃内訳					合	計					
孔番号	試験深度 (GL-m)	地層区分	打撃 回数 (回)	貫入量 (cm)	打撃 回数 (回)	貫入量 (cm)	打撃 回数 (回)	<mark>貫入量</mark> (cm)	打撃 回数 (回) ^{※1}	貫入量 (cm)	換算 N値 ^{※2}	最小値	最大値	平均 N値 ^{※3}
R4-BrNo.1	$1.15 \sim 1.45$	埋土層(F)	2	10	1	10	1	10	4	30	4	2	Α	2
R4-BrNo.1	$2.15 \sim 2.45$	埋土層(F)	1	15	1	15			2	30	2	2	4	3
R4-BrNo.2	$1.15 \sim 1.45$	底質堆積物(Bm)	1	30					1	30	1	1	2	1
R4-BrNo.3	$2.15 \sim 2.50$	底質堆積物(Bm)	1	20	1	15			2	35	2	1	2	1
R4-BrNo.1	3.15 ~ 3.45	沖積砂礫層(Ag)	6	10	7	10	7	10	20	30	20			
R4-BrNo.1	4.15 ~ 4.45	沖積砂礫層(Ag)	9	10	9	10	9	10	27	30	27			
R4-BrNo.2	$2.15 \sim 2.45$	沖積砂礫層(Ag)	1	10	1	10	1	10	3	30	3	3	27	13
R4-BrNo.2	$3.15 \sim 3.45$	沖積砂礫層(Ag)	4	10	4	10	4	10	12	30	12			
R4-BrNo.2	$4.15 \sim 4.45$	沖積砂礫層(Ag)	1	10	1	10	1	10	3	30	3			
R4-BrNo.1	$7.15 \sim 7.45$	洪積粘性土層(Dc)	1	10	1	10	1	10	3	30	3	2	4	Λ
R4-BrNo.1	$8.15 \sim 8.45$	洪積粘性土層(Dc)	1	10	2	10	1	10	4	30	4	3	-	7
R4-BrNo.2	$6.15 \sim 6.45$	洪積砂質土層(Ds)	2	10	1	10	2	10	5	30	5	Б	29	17
R4-BrNo.2	$7.15 \sim 7.45$	洪積砂質土層(Ds)	7	10	13	10	8	10	28	30	28	3	20	17
R4-BrNo.1	$5.15 \sim 5.45$	洪積砂礫層(Dg)	5	10	6	10	7	10	18	30	18			
R4-BrNo.1	$6.15 \sim 6.45$	洪積砂礫層(Dg)	3	10	5	10	6	10	14	30	14	11	27	20
R4-BrNo.2	$5.15 \sim 5.45$	洪積砂礫層(Dg)	4	10	3	10	4	10	11	30	11	- 11	31	20
R4-BrNo.2	8.15 ~ 8.45	洪積砂礫層(Dg)	9	10	13	10	15	10	37	30	37			
R4-BrNo.1	$9.15 \sim 9.45$	結晶片岩(Sch)	10	10	20	10	23	10	53	30	53			
R4-BrNo.1	$10.15 \sim 10.30$	結晶片岩(Sch)	33	10	27	5			60	15	120			
R4-BrNo.1	$11.15 \sim 11.35$	結晶片岩(Sch)	24	10	36	10			60	20	90			
R4-BrNo.1	$12.15 \sim 12.37$	結晶片岩(Sch)	22	10	30	10	8	2	60	22	82			
R4-BrNo.1	$13.15 \sim 13.33$	結晶片岩(Sch)	25	10	38	8			63	18	105	53	360	110
R4-BrNo.2	9.00 ~ 9.10	結晶片岩(Sch)	60	10					60	10	180			
R4-BrNo.2	$10.00 \sim 10.10$	結晶片岩(Sch)	60	10					60	10	180			
R4-BrNo.2	$11.00 \sim 11.07$	結晶片岩(Sch)	60	7		10		10	60	27	67			
R4-BrNo.2	$12.00 \sim 12.05$	結晶片岩(Sch)	60	5					60	5	360			

12.00 - 12.00

	ボーリング	孔口地盤高	掘進長	既往業務 の判定	§(2021) ≧深度	本業務(の判知	見直し) ≧深度	両者の差異	備考
	九奋	GH=m	(m)	GL-m	GH=m	GL-m	GH=m		
	R2-BrNo.1	30.04	17.00	11.30	18.74	11.30	18.74	差異なし	柱状図記載通り
	R2-BrNo.2	30. 49	21.00	0.80	29.69	0.80	29.69	差異なし	柱状図記載通り
	R2-BrNo. 3	29.48	17.00	8.90	18.63	10.80	18.63	1.9m下方へ	
	R2-BrNo. 4	31.93	45.00	7. 70	24. 23	9.00	22. 93	1.3m下方へ	
過年	R2-BrNo. 5	29.46	17.00	10. 70	18. 76	11.90	17.56	1.2m下方へ	コア組織の詳細観察 により判定
	R2-BrNo.6	31.85	17.00	9.50	22.35	11. 70	20. 15	2.2m下方へ	1-0.711/2
唐	R2-BrNo. 7	31.82	18.00	6.45	25. 37	7. 55	24. 27	1.1m下方へ	
業務	R2-BrNo.8	31.85	18.00	7.10	24. 75	7. 10	24. 75	差異なし	柱状図記載通り
	R2-BrNo.9				欠	番			
	R2-BrNo. 10	31.98	9.00	1. 20	30. 78	1. 20	30. 78	差異なし	柱状図記載通り
	R2-BrNo.11	32.04	15.00	1.55	30. 49	1. 55	30. 49	差異なし	柱状図記載通り
	R2-BrNo.12	31.98	14.00	1.35	30.63	1. 35	30. 63	差異なし	柱状図記載通り
	R2-BrNo.13	32. 15	19.00	7.80	24. 35	7. 80	24. 35	差異なし	柱状図記載通り
*	R4-BrNo.1	29.54	14.00	_	—	8.95	20. 59	_	
業	R4-BrNo. 2	28.77	12.00	_	—	8.80	19.97	_	
矜	R4-BrNo.3	29.05	10.00	_	_	9.05	20.00	_	

表 4.5-1 エスケイ(2021)および本調査で実施した掘削コアの基盤上面深度一覧表

表 5.4-1	トレンチ試料の放射性炭素同位体	(¹⁴ C)	年代測定結果

測定機関 番号 Beta-	サンプル名 sample	試料の種類 type of material	14C年代* Conventional Radiocarbon Age	暦年較 cal (95.4%	正年代** probability)	13C
Beta-632004	YG-TC1	plant material	320 ±30	(95.4%) 1484 - 1644 cal AD	466 - 306 cal BP	-26.03
Beta-632930	YG-TC2	organic sediment	12290 ±30	(88.8%) 12384 - 12140 cal BC (6.6%) 12838 - 12776 cal BC	14333 - 14089 cal BP 14787 - 14725 cal BP	-25.06
Beta-633210	YG-TC3-organic sediment	organic sediment	27820 ± 130	(95.4%) 30085 - 29407 cal BC	32034 - 31356 cal BP	-21.46
Beta-633580	YG-TC4	wood	28530 ± 140	(95.4%) 31294 - 30142 cal BC	33243 - 32091 cal BP	-27.02
Beta-632931	YG-TC3	charred material	12850 ±50	(95.4%) 13610 - 13235 cal BC	15559 - 15184 cal BP	NA***

* δ13C によって同位体分別を行った後のBP年代 ** 暦年較正は、IntCal20を用いて行った。 *** YG-TC3は、試料量が少なくCO2-同位体マスによる13C測定不可. コンタミネーションの影響がみられるため、堆積年代を推定する試料としては採用しない.

写真

写真 2.2-1 PS 検層の作業風景写真

左図の車のナンバープレートには、ぼかしを施した.

写真 4.2-1 ボーリング調査の様子

写真 5.2-1 トレンチ調査の様子

写真 5.2-2 杭抜き作業の様子

調査実施体制

第三者組織
太田 岳洋
(山口大学大学院創成科学研究科 教授)
大和田 正明
(山口大学大学院創成科学研究科 教授)
川村 喜一郎
(山口大学大学院創成科学研究科 研究教授)

評価体制

図1.3-1 調査実施体制と評価体制

図 2.1-1 調査地周辺の地質図(西村ほか, 2012 による)

図中の枠は、図 2.1-2A および図 2.1-3 の範囲を示す.山口盆地を挟んで北西側の Qp と南東側の Qp との間で食い違いが認められる. H:沖積層(完新統), P:段丘堆積物(更新統), Gr:花崗岩, Gd:花崗閃緑岩, Gp:花崗斑岩, Qp:石英斑岩・斜長斑岩・珪長岩 周防変成岩は Sb(泥質片岩), Ss(砂質片岩), Sg(塩基性片岩), Sul(蛇紋岩・かんらん岩・変斑れい岩) 黒太線:断層・スラスト(実線は実在断層,破線は伏在断層),赤太線:活断層(実線は実在活断層,点線は伏在活断層,破線は推定活断層)

図 2.1-2 既存研究に基づく山口盆地における活断層分布とその構造

A:文献・資料の断層確認位置及び活断層分布図. 断層確認情報は,高橋(1978,1980)および水野ほか (2004),金折ほか(2005)による.活断層線は,松浦ほか(2007),安川・田中(2008),西村ほか(2012), 西山ほか(2021)による.いずれの活断層線も,論文等の地図や地質図をスキャンし,GIS(地理情報シ ステム)でジオリファレンス(それぞれ基図の縮尺や投影法が異なるため,図中の緯度経度や三角点,河 川,街区等を目安にずれを補正し,JGD2011,平面直角座標第3系に投影し直した)したのち,活断層線 をトレースした.線の太さは,各図に記された太さと一致させている.安川・田中(2008)の活断層線に 付したケバは断層変位によって低下する側を示す.B:反射法地震探査とボーリング調査から推定される 山口盆地西縁断層(椹野川断層)の地下構造.金折ほか(2006)の図-14を引用.

図 2.1-3 山口盆地の活断層図

図 2.1-2A と同じ範囲を切り出した国土地理院活断層図(都市圏活断層図). 楮原ほか(2021)による. 活断層線の破線部分は位置やや不明確な箇所,矢印は相対的な水平方向の変位の向きを示す.

図 2.1-4 山口盆地における基盤面等高線図

安武・田中(2014)の等高線図に西村ほか(2012)の活断層線を追記した.

図 2.1-5 西山ほか(2021)による山口盆地の湯田温泉地域の比抵抗構造

西山ほか(2021)の Fig.3, Fig.7, Fig.8 を用いて,比抵抗構造の側方変化が分かりやすいよう,パネル ダイアグラム的に表現した.この図からは,この地域が高比抵抗域上面の変化に富む地域であることが 読み取れる.

大原湖-弥畝山西断層系の分布図(上)

大原湖-弥畝山西断層系の断層活動(下).相山・金折(2019)に加筆.

図 2.2-1 反射測線(山口大学, 2019)とボーリング調査位置図

基図には地理院タイルの全国最新写真を用いた.

R2-BrNo.1 (2022年6月15日 観察・撮影)

▲基盤岩上面深度 11.15~11.45mの間 (エスケイ, 2021では11.30m)

深度 10.71~10.79m(b+b'): 砂層. 灰白色. 級化構造が確認できる.

(aのブロックを裏返して撮影)

深度 11.15~11.45m(ペネ試料): 灰白色細粒砂と淡赤褐色風化結晶片岩が 両方含まれる。

深度 11.48~11.54m: 淡褐色風化結晶片岩. 片理面が発達. (aのブロックを裏返して撮影)

R2-BrNo.2 (2022年6月15日 観察・撮影)

0.80~0.91m区間 すでに基盤が露出

4.45~4.55m区間

15.48~15.66m区間(2枚の写真を結合)

(d)深度 0.85~0.89mおよび(e)4.45~4.49m : 強風化花崗斑岩. 斑状組織がわずかに残存. 基質は粘土化が著しく赤褐色. パッチ状の黒褐色部(褐鉄鉱もしくはマンガン鉱物)を含む. 風化を免れた石英粒子が認められる.

深度 15.52~15.54m:風化花崗斑岩.斑状 組織が残存.基質は粘土化が著しく明褐灰色. 深度 15.55~15.57m:斑状組織は認められ ない.風化により褐色粘土化.

深度 15.62~15.65m: 淡褐色風化結晶片 岩. 細かい片理面が発達. 15.54~15.62mの 間に貫入境界(色調は15.55mで変化).

図 2.2-3 R2-BrNo.2 の観察結果

R2-BrNo.3 (2022年6月15日 観察・撮影)

基盤岩上面深度 10.80m ▲ (エスケイ, 2021では8.90m)

深度 9.45~9.50m 砂層. 中粒砂~粗粒砂. 褐色.

深度 10.15~10.45m(ペネ試料): 風化結晶片岩の礫 を含む含礫砂層. 細粒砂~極粗粒砂主体.

深度 10.68~10.73m 石英礫を含む砂質シルト. 灰白色~淡褐色.

深度 10.78~10.83m 上部は灰白色砂質シルト. 下部は弱い片理面が発達. 淡褐色.

深度 10.88~10.92m 淡褐色風化結晶片岩. 弱い片理面が発達.

図 2.2-4 R2-BrNo.3 の観察結果

R2-BrNo.4 (2022年6月27日 観察・撮影)

(e)深度 9.49~9.56mおよび(f)9.62~9.76m: 強風化結晶片岩(砂質). 褐色. ごく弱い片理面 が認められる. 連続的な黒褐色脈(褐鉄鉱もしくはマンガン)が発達. 礫の含有は認められない.

(d)深度 9.15~9.45m(ペネ試料): 強風化結晶片岩(砂質). 褐色. 部分的に片理面が残存.

図 2.2-5 R2-BrNo.4 の観察結果

R2-BrNo.5 (2022年6月18日,8月29日 観察・撮影)

深度 11.68~11.78m: 砂礫層. 灰白色. 石英の細礫に富む.

深度 11.84~12.0m: 強風化岩. 淡褐色. 部分的にわずかに片理面が認められる. 礫の含有 は認められない.

エスケイコンサルタント(2021)を転載

深度 12.37m以深は片理面が明瞭に発達する風化結晶片岩(褐色)であることを確認。 深度 12.15~12.37mのペネ試料中に褐色の岩石が含まれることをエスケイ(2021)の写真で 確認。

図 2.2-6 R2-BrNo.5 の観察結果

R2-BrNo.6 (2022年6月27日 観察・撮影)

基盤岩上面深度 11.70m (エスケイ, 2021では9.50m)

深度 11.49~11.55m: 砂礫層. 淡灰色. 石英礫を 多く含む.

深度 11.64~11.69m: 砂礫層. 淡褐灰色(一部褐色). 石英の角礫を含む.

深度 11.73~11.76m(d)および11.80~11.84m(e): 強風化結晶片岩.明褐色.弱い片理面が認められる. 石英礫は認められない.黒褐色部(褐鉄鉱もしくはマンガン) が部分的に認められる.

図 2.2-7 R2-BrNo.6 の観察結果

R2-BrNo.7 (2022年6月18日 観察・撮影)

基盤岩上面深度 7.55m (エスケイ, 2021では6.45m)

深度 6.67~6.73m: 砂礫層.褐色.片岩礫を多く含む.

深度 7.45~7.50m: 砂礫層.褐色.石英礫を含む.

深度 7.55~7.62m(d)および7.81~7.87m(e): 風化結晶片岩.褐色.キンク褶曲する片理面が認められる.

図 2.2-8 R2-BrNo.7 の観察結果

R2-BrNo.8 (2022年6月18日 観察・撮影)

基盤岩上面深度 7.0~7.15m (エスケイ, 2021では7.10m)

深度 6.93~7.00m: 褐色砂礫層. 深度 7.45~7.50m: 風化結晶片岩. 片理面が発達.

深度 7.15~7.45m(ペネ試料): 全て風化結晶片岩. 片理面が発達.

図 2.2-9 R2-BrNo.8 の観察結果

R2-BrNo.10 (2022年6月14日 観察・撮影)

基盤岩上面深度 1.20m (エスケイ, 2021と同じ)

深度 1.10~1.16m: 土砂状. 明瞭な 片理面は確認できない. 淡褐色. 基質 は非常に緩い. (aのブロックを裏返して 撮影)

深度 1.24~1.29m: 強風化結晶片岩(砂質 片岩). 細かい片理面が確認できる. 淡褐色. 黒 褐色の脈状沈殿物あり(褐鉄鉱もしくはマンガ ン鉱物と思われる). (aの試料の断面を撮影)

図 2.2-10 R2-BrNo.10 の観察結果

R2-BrNo.11 (2022年6月14日 観察・撮影)

深度 1.20~1.55m(ペネ試料):暗褐色の砂礫層.

深度 1.70~1.74m: 強風化結晶片岩.粘土化著しいが, 細かい片理面が確認できる.赤褐色. (a写真の試料の半裁面を撮影)

▲ 基盤岩上面深度 1.55m (エスケイ, 2021と同じ)

深度 1.55~1.65m(ペネ試料): 強風化結晶片岩. わずかに片理面が 確認できる. 赤褐色. 礫は含まない.

深度 2.53~2.55m : 強風化結晶片岩. 粘土化著しいが, 細かい片理面が確認できる. 赤褐色.

図 2.2-11 R2-BrNo.11 の観察結果

R2-BrNo.12 (2022年6月15日 観察・撮影)

※3枚の写真を結合

基盤岩上面深度 1.35m (エスケイ, 2021と同じ)

深度 1.16~1.22m : 風化結晶片岩礫を含む 暗褐色シルト. 基質は空隙があり, 緩い.

深度 1.33~1.35mにかけて色調が暗褐色から 淡褐色に変化(白矢印部分).

深度 1.36~1.42m (右写真はコア底面を撮影):風化結晶片岩.片理面が確認できる.

深度 1.90~1.95m (右写真はコア底面を撮影): 風化結晶片岩. 明瞭な片理面が確認できる. 片理面上に光沢のある鉱物を確認. 黒褐色の細脈が発達.

図 2.2-12 R2-BrNo.12 の観察結果

R2-BrNo.13 (2022年6月15日 観察・撮影) (エスケイ, 2021と同じ) 012345678 (a) h 0 00 0 0 N U

深度 7.67~7.73m(右写真は拡大したもの): 円礫混じりの砂礫層. 褐灰色.

▼基盤岩上面深度 7.80m

深度 7.74~7.79m(右写真は拡大したもの): 強風化結晶片岩と砂礫が混在. 淡褐色. 基質は粘土化が著しい.部分的に片理面が認められる.

深度 7.80~7.86m(右写真はコア底面を撮影): 風化結晶片岩.淡褐色~淡灰色. 基質は粘土化.細かい片理面が認められる.

図 2.2-13 R2-BrNo.13 の観察結果